AAYUSH LAL ROY

Coder | Content Writer | Event manager & Coordinator | Orator

Student at CMR Institute of Technology, Bangalore.

Studied at Saint Paul's School, Jalpaiguri

Enumeration, Autoboxing and Annotation

This course talks about enum in java, along with Autoboxing and Annotation. It forms a part of Advanced java, and see this notes only if you have a query or want to understand enum, and have finished your pre-requisites.

Transmission and Distribution

Transmission and distribution refers to the different stages of carrying electricity over poles and wires from generators to a home or a business. The primary distinction between the two is the voltage level at which electricity moves in each stage. After electricity has been generated, a system of electrical wires carries the electricity from the source of generation to our homes and businesses. These lines can be found overhead or sometimes in the ground, and, combined, transmission and distribution lines make up what is commonly called “the grid.” Transmission and distribution are two separate stages or systems on the grid.

Strength of materials-P2(Thin and Thick Cylinders)

Strength of materials, also called mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. The complete theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials. An important founding pioneer in mechanics of materials was Stephen Timoshenko. This course talks about thin and thick cylinders

Electric Circuit Analysis

In an electrical circuit the process of studying and analyzing the various electrical quantities involved, especially the nodal voltages and currents through calculations, is known as circuit analysis.

Basic Thermodynamics

Thermodynamics, science of the relationship between heat, work, temperature, and energy. In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another. The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work.

Material Science

The interdisciplinary field of materials science, also commonly termed materials science and engineering is the design and discovery of new materials, particularly solids. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy.[1][2] Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools of the study, within either the Science or Engineering schools, hence the naming.

Digital System Design

Digital system design is process of designing or developing systems which represent information using a binary system It's easier to store, reproduce, transmit & manipulate digital data & cheaper/easier to design such systems. Microcontrollers, Microprocessors, Memory chips, FPGA are examples of digal ic design. Systems like for example a PC can be built using these components and that forms a digital system or platform.

Mechanics of Materials

Strength of materials, also called mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. The complete theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials. An important founding pioneer in mechanics of materials was Stephen Timoshenko.

Turbo-machines

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.[1][2] These two types of machines are governed by the same basic relationships including Newton's second Law of Motion and Euler's pump and turbine equation for compressible fluids. Centrifugal pumps are also turbomachines that transfer energy from a rotor to a fluid, usually a liquid, while turbines and compressors usually work with a gas.[1]

Transformers and Generators

A transformer is a passive electrical device that transfers electrical energy between two or more circuits. A varying current in one coil of the transformer produces a varying magnetic flux, which, in turn, induces a varying electromotive force across a second coil wound around the same core. Electrical energy can be transferred between the two coils, without a metallic connection between the two circuits. Faraday's law of induction discovered in 1831 described the induced voltage effect in any coil due to changing magnetic flux encircled by the coil.

Power Electronics

Power electronics is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Construction Management & entrepreneurship

Construction management (CM) is a professional service that uses specialized, project management techniques to oversee the planning, design, and construction of a project, from its beginning to its end. The purpose of CM is to control a project's time / delivery, cost and quality—sometimes referred to as a project management triangle or "triple constraints."[1] CM is compatible with all project delivery systems, including design-bid-build, design-build, CM At-Risk and Public Private Partnerships. Professional construction managers may be reserved for lengthy, large-scale, high budget undertakings (commercial real estate, transportation infrastructure, industrial facilities, and military infrastructure), called capital projects.